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Take Home Message (115/117 characters):

16S rRNA gene sequencing is not sensitive to detect Mycobacterium but identifies

microbiota signatures associated with inflammation.

Plain language Summary:

Non-tuberculosis mycobacterium (NTM) is increasing in incidence worldwide.
However, acquiring this pathogen does not always lead to pulmonary disease and it

is unclear what factors are related to the development of disease.

In this study, oral and sputum samples were collected from 106 participants. Just
over half the participants had NTM on sputum culture. Additionally, samples from
the lower airways through bronchoscopy were collected from 20 participants.

Samples were processed using a next generation sequencing.

16S rRNA gene sequencing was not a sensitive technique to detect Mycobacterium.
Lower airway samples frequently revealed enrichment with bacteria commonly
consider oral commensals. Importantly, enrichment of the lower airways with these
oral commensals was associated with an increase in lower airway inflammation in
participants with NTM disease. This suggests that aspiration of oral bacteria into the
lung is associated with the lower airway inflammatory tone and may be a factor in the

development of NTM disease.



Abstract

Background. Aspiration is associated with non-tuberculous mycobacterial (NTM)
pulmonary disease and airway dysbiosis is associated with increased inflammation.
We examined whether NTM disease was associated with a distinct airway microbiota
and immune profile.

Methods. 297 oral wash and induced sputum samples were collected from 106
participants with respiratory symptoms and imaging abnormalities compatible with
NTM. Lower airway samples were obtained in 20 participants undergoing
bronchoscopy. 16S rRNA gene and a nested mycobacteriome sequencing
approaches characterized microbiota composition. Inflammatory profiles of lower
airway samples were also examined.

Results. The prevalence of NTM+ cultures was 58%. Few changes were noted in
microbiota characteristic or composition in oral wash and sputum samples among
groups. Among NTM+ samples, 27% of the lower airway samples were enriched
with Mycobacterium. A mycobacteriome approach identified Mycobacterium in a
greater percentage of samples, including some non-pathogenic strains. In NTM+
lower airway samples, taxa identified as oral commensals were associated with
increased inflammatory biomarkers.

Conclusions. The 16S rRNA gene sequencing approach is not sensitive in
identifying NTM among airway samples which are culture positive. However,
associations between lower airway inflammation and microbiota signatures suggest

a potential role for these microbes in the inflammatory process in NTM disease.



Introduction

Non-tuberculosis Mycobacterium (NTM) disease has an estimated incidence
between 1.0 to 7.2 cases per 100,000 persons/year and its incidence is increasing
for unknown reasons [1]. Despite wide spread exposure to these organisms, only a
minority of exposed individuals will acquire NTM and an even smaller subgroup will
develop clinically-evident disease. Importantly, effectiveness of treatments for active
NTM disease has been limited due to an absence of antimicrobial agents with low
toxicity and good in vivo activity against the organism. Thus, treatment for NTM is
not recommended for everyone as the clinical course of the pulmonary disease is

variable [2].

The current clinically available methods of culturing airway samples are unable to
represent interactions that NTM may have with other bacterial organisms present in
a complex microbial environment. With improvements in culture-independent
techniques, the microbiota-host immune interaction can be examined in further detail
[3]. There have been several studies examining the airway microbiota in non-cystic
fibrosis bronchiectasis [4-10] using sputum obtained from cohorts where NTM is not
prevalent. Description of the lower airway microbiome, however, has been
challenging because the bacterial burden in the lung is approximately a million-fold
lower than in the gut and a hundred-fold lower than the upper airway [11, 12]. The
presence of supraglottic microbes, such as Veillonella or Prevotella, in the lower
airway is common [11-18] and they are associated with increased inflammation [11,
19] supporting the idea that microbiota changes are linked to the host immune
phenotype in the airway mucosa. We therefore seek to identify microbial signatures
associated with culture-positive NTM that may affect the host immune phenotype.

Here we utilized a 16S rRNA gene high throughput sequencing approach in parallel



to a modified “mycobacteriome” sequencing approach on a large cohort of subjects

with non-cystic fibrosis bronchiectasis and high prevalence of NTM.



Material and Methods

Study Subjects

This was a prospective observational study of non-HIV-infected patients (n=106) with
a diagnosis of non-cystic fibrosis bronchiectasis enrolled over a two-year period at
NYU as part of a USA multicentre bronchiectasis cohort (Bronchiectasis Research
Registry). All participants signed informed consent and the protocol was approved
by the New York University institutional review boards (IRB# S14-01400). See

supplementary methods for details on patient selection.

Procedures

Oral wash and induced sputum samples were collected from every patient at
enrolment and again when sputum was clinically indicated over the two-year study
period (Supplementary Table 1). In addition, for every induced sputum we collected
an oral wash sample prior to sputum induction. A portion of this sputum sample was
sent to the clinical laboratory for culture and, based on the epithelial cell count,
90.5% of induced sputum samples met criteria for good quality [20]. Aliquots of oral
wash and induced sputum were frozen at -80°C for bacterial DNA sequencing. In
order to investigate how reliable induced sputum was to evaluate the lower airway
microbiota and to evaluate the inflammatory status of the lower airway mucosae a
subset of patients (n=20) underwent bronchoscopy (clinically indicated in 14 while
the remaining 6 were done for research only purposes). Sampling included
equipment background controls (sterile saline, yankauer and bronchoscope),
supraglottic (sampled using yankauer) and two bronchoalveolar lavage (BAL)
samples: one from an involved lung segment (predefined based on CT scan) and the

other from a non-involved lung segment. No samples were obtained from



participants during an acute exacerbation or recent antibiotic use (<1month). Whole
BAL fluid aliquots were frozen at -80°C for bacterial 16S rRNA gene sequencing as

well as 16S gqPCR.

Details of DNA sequencing are in the supplementary methods. In addition to 16S
rRNA gene sequencing performed with Illlumina MiSeq, we utilized a nested PCR
approach in parallel to enrich for Mycobacterium DNA coding for the 16S rRNA gene
prior to library preparation for sequencing in order to describe the Mycobacteriome
as previously published [21]. The obtained 16S rRNA gene sequences were
analyzed using the Quantitative Insights into Microbial Ecology (QIIME 1.9) package

[22].

Immune profiling was done for all BAL samples from the 20 patients who were part
of the bronchoscopy sub-group. In vivo inflammation was assessed from acellular
bronchoscopy samples by cell count differential and cytokines using Luminex as
previously described [23, 24]. Ex vivo cytokine production of BAL cells was
evaluated during toll like receptor 4 (TLR4) stimulation. (See supplementary

methods for details)
Statistical Analysis

For association with discrete factors, we used non-parametric tests (Mann-Whitney
or Kruskal-Wallis ANOVA). We used the ade4 package in R to construct Principal
Coordinate Analysis (PCoA) based on weighted UniFrac distances [25, 26]. To
cluster microbiome communities into exclusive ‘metacommunities’ we used a
Dirichlet Multinomial Mixture Model with the R package DirichletMultinomial [27, 28].
To evaluate differences between groups of 16S data or inferred metagenomes, we

used linear discriminant analysis (LDA) Effect Size (LEfSe) [29]. For tests of



association with continuous variables, we used non-parametric Spearman correlation
tests. Co-occurrence between most abundant bacterial genera (>1% relative
abundance in at least one sample) were assessed using SparCC [31] with 20
iterations and 500 bootstrap replicates to eliminate correlations where significance
was driven by outliers and visualized using Cytoscape v3.0.2 [32]. Only biomarkers
that passed FDR correction were used for this analysis. All data is publicly available
in Sequence Read Archive (SRA) under accession number PRINA418131. All codes
utiized for the analysis included in this manuscript are available at

https://github.com/segalmicrobiomelab/ntm_bronchiectasis_microbiome



Results

Participants

Table 1 shows demographics and clinical characteristics of 106 patients. All
participants had imaging abnormalities. Culture data shows that 61/106 participants
(58%) had positive NTM sputum cultures at baseline. BMI was lower among NTM+
participants (p<0.01). Importantly, patients had variable prevalence of symptoms and

radiographic findings.

Comparing Sputum and Oral Wash Microbiome

To evaluate the airway microbiome, we utilized all obtained oral wash and sputum
samples (n=297). Oral wash samples had higher o diversity than sputum (Shannon
index, Supplementary Figure 1A). Further, p diversity analysis showed significant
differences between these two sample types (PERMANOVA p<0.001,
Supplementary Figure 1B) although there was greater degree of similarity between
samples from same subject than between subjects (Supplementary Figure 1C).
LEfSe analysis showed that sputum samples were enriched with Prevotella,
Veillonella and Corynebacterium, while oral wash samples were enriched with

Streptococcus, Rothia and Actinomyces (Supplementary Figure 1D).



Comparison of airway microbiota in NTM+ vs. NTM- using sputum and oral wash

samples

We then compared differences in microbiota for each of these sample types based
on NTM status. The NTM culture status was based on the culture result of the
specimen that was sequenced. Figure 1 and Supplementary Figure 2 evaluates
differences based on NTM culture status at the time of sample collection. In oral
wash samples, there was no significant difference in o diversity but a significant
difference in B diversity between NTM- and NTM+ samples (PERMANOVA p=0.043).
In sputum samples, there were no statistically significant differences in either o
diversity (p=0.05) or B diversity (p=0.08) between NTM- and NTM+ samples. Similar
negative results were seen when comparing NTM status based on ATS/IDSA
diagnostic criteria (NTM culture positivity in > 2 sputum or 1 BAL samples)[33] or

when only baseline sample were considered (data not shown).

Interestingly, Mycobacterium was not found to be enriched in NTM+ samples.
Indeed, this genus was only found present in a very small percentage of both oral or
sputum samples. We therefore investigated whether more differences in microbiota

could be identified by sampling the lower airway.

Microbiota comparison across the airways using bronchoscopic samples

A subgroup of 20 participants from this cohort (40% with culture positive NTM)
underwent bronchoscopy (Supplementary Table 2 and Supplementary Figure 3).
We first compared how representative the sputum was of the lower airway

microbiota (where we sampled involved and non-involved lung segments based on



CT). Quantification of 16S rRNA copies gPCR showed that sputum had
approximately 2 log higher bacterial load as compared with BAL samples
(Supplementary Figure 4). The high bacterial load in sputum was comparable with
the bacterial load present in oral wash and supraglottic samples. Figure 2 displays
the a.and 3 diversity for all bronchoscopy related samples. There were significant
differences in 3 diversity (p<0.01). The degree of similarity between upper airway,
sputum and BAL samples was calculated as weighted UniFrac distance.
Interestingly, sputum was more similar to oral wash or to supraglottic samples than
to BAL (true for both involved or non-involved lung segments, Figure 2C). This data
suggest that sputum cannot be used as a surrogate for the lower airways to study

the airway microbiota in this cohort.

Comparison of airway microbiota in NTM+ vs. NTM- using bronchoscopic samples

Of the twenty patients that underwent bronchoscopy, 12/20 (60%) were NTM- and
8/20 (40%) were NTM+. There were no significant differences in the bacterial load of
NTM+ vs. NTM- lower airway samples (p=ns). Supplementary Figure 5 shows no
statistically significant differences in o or B diversity in BAL samples when
categorized based on NTM culture status. Similarly, no differences were noted
between BAL samples obtained as part of clinically indicated bronchoscopy as
compared with research bronchoscopy (data not shown). Even though
Mycobacterium was enriched in NTM+ BAL samples (Figure 3), this taxon was only
found present in 27% of these culture positive samples (median relative abundance
0 [0-0.014]). This data suggested that this sequencing approach was not able to

detect the “pathogen” identified as responsible for the disease process and is



consistent with prior literature that has shown poor accuracy of 16S rRNA gene

sequencing methods to detect Mycobacterium [34].

Evaluation of the Mycobacteriome

We therefore utilized an optimized protocol to enrich for Mycobacterium DNA coding
for the 16S rRNA gene using a recently published DNA isolation method [35] and a
nested PCR approach [36] (see supplement for more details). We first utilized a
mock community of Mycobacteriun fortuitum and Streptococcus in order to establish
the limit of detection for Mycobacterium with this approach (see Supplementary
Results and Supplementary Figure 6 for further details). We then utilized this
nested mycobacteriome approach in all samples from the participants that
underwent bronchoscopy. PCoA plots comparing standard 16S rRNA gene
sequencing and nested mycobacteriome approaches of BAL, sputum and
supraglottic samples. Figure 4 shows significant overlap for a large proportion of
samples but identified compositional differences in others. Histograms in Figure 4
also show the relative abundance of different Mycobacterium OTUs obtained with
both nested mycobacteriome and 16S rRNA gene sequencing approaches. In BAL
samples, Mycobacterium was detected in four out of 15 (27%) NTM+ samples with
standard 16S rRNA gene sequencing approaches but with the nested
mycobacteriome approach Mycobacterium was detected in all 4 samples plus 3
other NTM+ BAL samples (47%). Blast analysis demonstrate that these sequences
matched Mycobacterium avium. Further, this nested mycobacteriome approach
identified one out of 21 (5%) NTM- sample with Mycobacterium. Blast analysis of this

OTU was annotated to Mycobacterium houstonense (an environmental



Mycobacterium not known to be pathogenic). Use of this nested mycobacteriome
approach on background control samples detected a significant amount of
Mycobacterium reads (>5% relative abundance) in only one control background
sample, and fewer reads in only 2/19 background equipment samples. Blast analysis
of Mycobacterium reads found in background equipment samples were also
annotated to a non-pathogenic strain (Supplementary Figure 7). Similar results
were found when this approach was utilized in oral and sputum samples from those

subjects that did not undergo bronchoscopy (See supplement for more details).

Lower airway immunological profiling

To evaluate the association of microbial signatures in NTM disease with a distinct
mucosal immune phenotype we examined BAL cell differentials, in vivo cytokine
levels and ex vivo cytokine production. In NTM+ participants, BAL samples from
involved lung segments had significantly higher neutrophils and fewer macrophages
when compared to non-involved lung segments (Table 2). In contrast, in NTM-
participants, BAL samples from involved lung segments had significantly higher
lymphocytes. In vivo cytokine levels measured in BAL also showed a different
inflammatory profile for NTM+. In NTM+ participants, BAL samples from involved
lung segments had significantly higher levels of IFNy, IL-8, IL-12p70, ITAC, MIP1a,
and MIP1Bp as compared with non-involved lung segments. This pattern was not
present in BAL samples from NTM- participants, where involved lung segments had
lower levels of MIP3a and IL-17A. Similarly, a distinct inflammatory pattern was
observed during ex vivo TLR-4 stimulation of BAL cells (Supplementary Table 3). In

NTM+ participants, BAL cells from involved lung segments had blunted production of



GM-CSF and IFNy. These differences were not noted in NTM- participants.

We then evaluated the microbiome signatures associated with these inflammatory
biomarkers in NTM+ samples and NTM- samples. For this, we utilized a network
approach to evaluate taxa that trend to co-occur and were identified as distinct

clusters based on DMM clustering (see Supplement and Supplementary Figure 9)

In BAL of NTM+ participants, oral commensal such as Prevotella, Veillonella and
Leptotrichia tended to co-occur and had significant correlations with neutrophils and
several cytokines including IL-6, IL-17, IL-23, and Fractalkine (Figure 5).
Interestingly, Mycobacterium was in a separate co-occurrence cluster and had no
significant correlation with inflammatory biomarkers. In BAL of NTM- samples, the
relative abundance of oral commensals in the lower airway samples had fewer

significant correlations with cytokines and BAL cells (Supplementary Figure 10).



Discussion

The purpose of this investigation was to evaluate the airway microbiota using
culture-independent techniques in a prospective cohort of patients suspected of
having NTM disease. Our analysis showed that using sputum samples, few changes
in microbiota composition could be identified between samples with and without NTM
identified by culture. Using upper and lower airway samples from a subgroup of
participants who underwent bronchoscopy we showed that induced sputum offers a
poor representation of the lower airway microbiota in this patient population and
more accurately reflects the composition of the oral cavity. Further, the culture-
independent approach did not find Mycobacterium in a large percentage of samples.
We expanded these observations with a Mycobacterium-biased nested sequence
approach to confirm that in the majority of NTM+ participants, the abundance for this
organism was low or not detected in contrast with the many other microbes
identified. This data demonstrates the limited sensitivity of these culture independent
methods to detect Mycobacterium and exemplifies an unrecognized limitation of
current universal sequencing methods to study pathogens present at low
abundance. Finally, the lower airways of NTM+ participants had a distinct
immunological phenotype where levels of several inflammatory biomarkers
correlated with the relative abundance of microbes identified as oral taxa and not
with the relative abundance of Mycobacterium. These data suggest that micro-
aspiration and/or failure to clear aspirated oral microbes may contribute to the

inflammatory endotype in NTM disease.

Culture-independent techniques have demonstrated that the airways harbor a

complex microbiota that has a significant impact on the host immune response [3,



11, 23, 37, 38]. In a recent study involving 76 non-cystic fibrosis bronchiectasis
patients from a multicentre European cohort, Haemophilus influenza, Pseudomonas
aeurginosa and Streptococcus were found to be the most abundant species in
sputum samples [4]. However, this cohort is characterized by a low prevalence of
NTM. In the US, NTM is a frequent cause of non-CF bronchiectasis, as recently
shown by Aksamit et al. [39] and multiple strains of NTM are associated with
bronchiectasis [40]. In our study, the prevalence of NTM was 58%, similar to the US
Bronchiectasis Research Registry [39]. Diagnosis of NTM disease is commonly
based on induced sputum. We therefore examined microbiota differences in induced
sputum as well as oral wash in our cohort. Both sputum and oral wash samples
showed non-significant differences in diversity metrics based on NTM status.

Moreover, in NTM+ patients, Mycobacterium was not enriched in these samples.

To further characterise the lower airway microbiota in NTM disease a subset of
patients underwent bronchoscopy with BAL and upper airway (oropharyngeal)
sampling. Differences among oropharyngeal microbiota included enrichment with
Streptococcus and Rothia in oral wash and enrichment with Prevotella and
Veillonella in supraglottic samples. Importantly, comparison between induced
sputum and both upper and lower airway samples showed that induced sputum is
compositionally more similar to the upper airway microbiota (either oral wash or
supraglottic) than to the lower airway microbiota. This supports that induced sputum
is predominantly influenced by the composition of the upper airway microbiota and
offers a poor representation of the lower airway microbiota. Similar to our findings,
the use of induced sputum to evaluate the airway microbiota in a cohort of patients
with asthma also provides an incomplete reflection of the lower airways and it is

mostly influenced by the oral microbiota.[41] This also has implications to our limited



understanding of the lower airway microbiota using non-invasive samples. In our
cohort, BAL samples from NTM+ participants were enriched with Mycobacterium,
and Oxalobacteraceae while BAL samples from NTM- participants were enriched
with Porphyromonas. However, similar to induced sputum, Mycobacterium was
frequently not identified using 16S rRNA gene sequencing in samples with positive
cultures for this organism. This is consistent with prior observations that have been
published [34, 35]. As NTM tends to have only one or two 16S rRNA genes per
genome, they can be underrepresented in the context of other taxa with more 16S
rRNA genes per bacteria using standard methods of 16S sequencing [33, 42]. In
BAL, Mycobacterium was identified only in 27% of the NTM+ samples using
standard 16S rRNA gene sequencing. For this investigation we seek to use a
universal sequencing approach that allows us to characterize broadly the bacterial
composition of the airway microbiota. Since Mycobacterium was rarely present
among NTM+ cases using the now broadly accepted 16S rRNA gene sequencing we
attempted to improve our sensitivity in identifying this genus by applying a nested
amplification approach where the first PCR targeted a Mycobacterium-specific region
that contains the V4 region of the 16S rRNA gene [34, 43-45]. It is possible that other
Mycobacterium specific primers would have a better yield at identifying this
organism. Nonetheless, with this method of sequencing, we were able to identify
Mycobacterium in 47% of the BAL samples where NTM grew in culture. In contrast,
Mycobacterium was only identified in 17% of NTM+ sputum samples, which is likely

also related to how representative the sputum is of the lower airway microbiota.

Our bronchoscopic sampling also allowed us to compare the inflammatory
phenotype of NTM+ and NTM- participants. It has previously been shown that with

mycobacterial infection, through induction of IFNy, activated macrophages up



regulate the expression of pro-inflammatory cytokines to help protect against
mycobacterial infection. These cytokines include IL-6, IL-1B, IL-12, TNFa and nitric
oxide [46, 47]. In NTM+ BAL samples obtained from involved sites, BAL cells
stimulated with LPS showed a significantly blunted IFNy and GMCSF suggesting
important impaired innate immune responses. In a co-occurrence network analysis,
significant associations between taxa identified as oral commensals (e.g. Prevotella,
Veillonella and Leptotrichia) and Th1l7 cytokines were also seen in NTM+ BAL
samples. The relative abundance of Mycobacterium was not significantly correlated
with levels of inflammatory biomarkers suggesting the importance of other microbes

on the lower airway inflammatory tone in NTM disease.

There were several limitations in this study. The patients enrolled in this cohort had a
mild form of NTM. A large proportion of patients with NTM grew Mycobacterium
avium complex, consistent with the US Bronchiectasis Research Registry [33, 39]. It
is possible that different strains of Mycobacterium and different degrees of disease
severity would have a different airway microbiota and inflammatory signatures than
what was observed in our study. In this investigation, a relatively small proportion of
patients underwent bronchoscopy allowing us to evaluate the lower airways [48] and
most were done for clinical reasons. Although similar to our larger cohort, these
patients may represent a different disease phenotype. However, given the limited
representation of the lower airways provided by the microbiota present in sputum
samples, further investigation is warranted in a larger cohort to uncover microbiota
host interactions that might be relevant in this disease and to define which microbiota
signatures present in induced sputum could be used to explore the lower airway
microbiota. Further, even though we identified some significant associations between

lower airway microbiota signatures and inflammatory biomarkers in the NTM+ group,



we considered these results as exploratory and hypothesis generating. A larger
cohort of patients where bronchoscopic samples are obtained will be needed to
confirm and expand these findings. Finally, the purpose of this study was to evaluate
the microbiome community of patients with NTM related bronchiectasis. Therefore,
we did not evaluate the change in microbiome composition with exacerbations nor
the effects of treatment for NTM. Importantly, patients on treatment for NTM were
excluded from this analysis to avoid this potential confounder to the analysis of

differences between NTM+ vs. NTM- groups.

In summary, we identified the limitations of current unbiased culture-independent
techniques to identify Mycobacterium in patients with culture positivity for NTM,
which highlights the need for technical improvements in these methods. In addition,
we describe that patients with NTM disease have a distinct inflammatory
environment in the lower airways that may be associated with some of the
components of the lower airway microbiota including taxa commonly identified as
oral commensals. These data suggest a possible role of micro-aspiration or failure to
clear upper airway microbes from the lower airways and may explain some of the
heterogeneity in presentation and disease progression among participants with
culture positive NTM disease. The contribution of the lower airway microbiota to the
pathophysiological inflammatory process in NTM disease warrants further

investigation in a larger cohort and may have potential therapeutic implications.
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Figure & Table Legends:

Figure 1: Taxonomic Differences between all oral wash and sputum samples
for the NTM+ and NTM- groups. A. For oral wash samples LeFSE analysis
identified significant taxonomic differences in microbiome enrichment based on NTM
status but there was no enrichment with Mycobacterium in NTM+ oral wash
samples. B. For sputum LeFSE analysis detected few taxonomic differences and

there was no enrichment with Mycobacterium in NTM+ sputum samples.

Figure 2: Evaluation of the lower airway microbiota using bronchoscopic
samples. Bronchoscopy samples included: Background (BKG), Nasal Swab, Oral
Wash, Sputum, Supraglottic (SUP) and Bronchoalveolar Lavage (BAL). A. There
were significant differences in a diversity (Shannon Diversity Index) between all
samples. B. B diversity (based on weighted UniFrac) showed differential clustering
based on sample type (PERMANOVA p<0.01). C. Comparison of the degree of
similarities between upper and lower airway samples based on UniFrac distance.
Results showed that the microbiota in sputum was more similar to the microbiota of
supraglottic and oral wash samples, than to the microbiota in BAL samples (both

involved and non-involved).

Figure 3: Taxonomic differences between NTM+ and NTM- in lower airway
microbiota. LeFSE analysis showed significant differences in lower airway
microbiota composition enrichment based on NTM status. Unlike sputum samples,

Mycobacterium was enriched in NTM+ BAL samples.

Figure 4: Comparison between sequence data obtained using an unbiased

16S rRNA approach and a biased mycobacteriome approach. Top panels show



differences in 3 diversity (based on weighted UniFrac distance) between samples
processed with unbiased 16S vs. biased mycobacteriome approach. Bar charts in
the bottom panels show relative abundance of OTUs annotated to Mycobacterium
and their annotation based on BLAST on the two datasets. A. In BAL, there were
significant differences in p diversity between BAL samples processed with unbiased
16S vs. biased mycobacteriome approach (PERMANOVA p< 0.01). With the biased
mycobacteriome approach, Mycobacterium avium was identified in 7 of the NTM+
culture samples while one NTM- sample had a Mycobacterium OTU annotated to M.
houstonense (a strain not known to be pathogenic). B. In sputum there were
significant differences in p diversity between the sputum samples processed by
unbiased16S vs. biased mycobacteriome approach (PERMANOVA p< 0.01). With
the biased mycobacteriome approach, Mycobacterium avium was identified in 3 of
the NTM+ culture samples. C. In supraglottic there was no significant difference in

B diversity between samples processed by unbiased 16S vs. biased mycobacteriome
approach. Intwo samples, a Mycobacterium annotated to a non-pathogenic strain

was identified.

Figure 5: Associations between taxa and inflammatory biomarkers in the
lower airways for NTM+ samples. A network analysis using SparCC, to remove
compositional and sparsity effects common in microbiome data, was constructed to
identify correlations between taxa at a genus level (round nodes) and both
inflammatory biomarkers (green squares). Each node represents a genus, with the
size of nodes indicating the log-relative abundance from large (high) to small (low).
In addition, taxa identified as marker for lower airway microbiota cluster (based on
DMM analysis shown in Supplementary Figure 5) was color coded as purple for

Cluster 1 and red for Cluster 2. Edges between nodes represent significant



correlations (where blue indicate positive correlations and dashed grey indicate
negative correlations), with the length of the edge representing the correlation

coefficient strength (shorter edges indicating higher positive correlation).



Table 1: Baseline demographic and clinical information of all patients recruited

All Patients NTM Status
VARIABLES (-) (+) p value
N 106 45 61
Age 67.5(10.7) 67.6(10.1) 67.3(11.3) 0.88
No. Female (%) 95 (89) 37 (82) 58 (95) 0.71
No. Caucasian (%) 92 (87) 34 (76) 58 (95) 0.39
BMI 22.7 (4.3) 24.2 (5.2) 21.5(3.1) <0.01
Packs Per Day 1.3(2.2) 1.2 (1.0) 1.4 (3.0) 0.85
No. Years Smoking 19.2 (13.1)  22.9(14.5) 15.1(9.9) 0.04
Symptoms - No. Patients (%)
Cough 63 (59) 22 (49) 41 (67) 0.07
Sputum 47 (44) 14 (31) 33(54) 0.15
Hemoptysis 8(8) 3(7) 5(8) 0.76
Shortness of Breath 42 (39) 17 (38) 25 (41) 0.92
Wheeze 14 (13) 7 (16) 7 (11) 0.6
Fatigue 26 (25) 9 (20) 17(28) 0.6
Postnasal Drip 36 (34) 19 (42) 17 (28) 0.03
Sinusitis 4 (4) 4 (9) 0 (0) 0.03
Current NTM Culture
MAC 56 (53) 0(0) 56(92)  <0.001
M. abscessus 5(5) 0(0) 5(8) <0.05
Current Bacterial Culture
Oropharyngeal Flora 15 (14) 4 (9.5) 11 (18) 0.13
Pseudomonas aeruginosa 6 (6) 1(2) 5(8) 0.19
MSSA 5 (5) 2 (4) 3 (5) 0.91
Other 10 (9) 4 (9.5) 6 (10) 0.89
Negative Culture 17 (16) 9(20) 8 (13) 0.34
Lung Physiology*
FVC (% predicted) 92.7(20.1) 92.6(20.4) 92.8(20.0) 0.97
FEV; (% predicted) 83.7(21.8) 83.4(22.1) 84.0(21.8) 0.91
FEV1/FVC (%) 70.2 (10.6)  69.2 (10.7) 71.0(10.6) 0.44
RV (% predicted) 121.8 (31.7) 118.4(32.8) 124.5(31.0) 0.41
TLC (% predicted) 106.4 (18.5) A 105.6(16.2) 106.9(20.2) 0.76
DLCO (% predicted) 87.4(20.7) 90.7(23.7) 85.4(18.7) 0.35
HRCT Thorax - No. Patients (%)
Bronchiectasis 79 (75) 34 (76) 45 (78) 0.45
Thickened Airways 52 (49) 23 (51) 29 (59) 0.73
Mucoid Impaction 54 (51) 20 (44) 34 (74) 0.57
Nodules 70 (66) 29 (64) 41 (67) 0.29
Tree-in-Bud 30 (28) 11 (24) 19(31)  0.41
Ground Glass Opacification 31(29) 17 (38) 14 (23) 0.16
Questionnaire Data (n=101)
SGRQ Total Score 27.5(19.3) 28.4(21.1) 26.8(18.1) 0.68
RSI Total 11.9 (9.2) 13.7 (9.4) 10.7(8.9) 0.12
FSSG Total 8.5(8.5) 9.8 (9.7) 7.6 (7.5) 0.22
EAT 10 Total 3.0(5.8) 3.0(5.6) 40.8 (20.0) 0.97




* Available in 89 participants. BMI = Body mass index; MAC = Mycobacterium avium
complex; M.Abcessus = Mycobacterium abscessus; MSSA= methicillin-sensitive
Staphylococcus aureus; FVC= forced vital capacity; FEV; = Forced expiratory
volume in 1 second; RV = Residual volume; TLC = Total lung capacity; DLCO =
Diffusion Lung capacity of carbon monoxide; HRCT = High resolution computed
tomography; SGRQ = St. George’s respiratory questionnaire; RSI = Reflux symptom
index; FSSG = Frequency scale for the symptoms of gastro-esophageal reflux

disease; EAT = Eating assessment tool.



Table 2: Cell count, and in vivo cytokine levels in bronchoalveolar Iavag_;e (BAL) of 20 patients from the bronchoscopy cohort.

NTM- NTM+
(n=12) (n=8)
>
Involved Non-Involved value Involved Non-Involved P value
Cell Count
Macrophages 44.2 [28.2-75.7] 75.4 [51.7-80.4] ns 19.6 [15.75-39.65] 75.4 [66.0-85.0] 0.02*
Neutrophils 52.8 [13.4-69.8] 13.2 [10.5-35.05] ns 79.6 [58.2-82.75] 17.1[6.5-31.2] 0.02¥
Lymphocytes 2.8 [2.6-10.9] 11.4 [2.95-12.7] 0.02 2.2 [1.7-2.45] 1.8 [0.5-3.8] ns
Eosinophils 0[0-0] 0 [0-0] ns 0[0-0] 0[0-0] ns
In Vivo Cytokine Level (pg/ml)
ITAC 19.39 [19.4-224.4]* 224.4 [135.6-274.9] ns 426.4 [372.5-1135.8]* 469.73 [352.8-489.7] 0.02"
MIP1p 64.875 [60.7-114.2] 83.545 [61.8-109.2] ns 138.08 [134.1-188.8] 111.83[71.8-141.4]  0.02"
IFNy 21.36 [6.4-30] 8.46 [6.7-13.8] ns 63.085 [24.8-158.6] 22.095 [17.6-26.5] 0.03
IL-8 423.565 [216.9-486.8]* 351.12 [240.7-1810.2] ns 5927.82 [5927.8-5927.8]* 411.345 [242.8-586.8] 0_03T
IL-12 p70 3.95[3.7-4.1]* 3.715 [3.5-4.3] ns 5.155 [4.2-6.6]* 4.605 [4.3-4.6] 0.06
MIP1a 116.88 [66.2-179.7] 95.855 [72.4-128.3] ns 268.83 [143.4-489.8] 117.975 [78.5-143.1] 0.06
MIP3al 49.105 [51.9-86.3]* 86.26 [75.6-254.4] 0.03 356.01 [300.8-443.1]* 201.49 [141.7-228.2] ns
IL-17A 9.65[10.1-18.2] 18.18 [15-20.7] 0.06 11.02 [10.5-13.2] 15.44 [10.4-19.9] ns
IL-13 7.445 [8.3-19.3] 13.97 [11.3-17.9] ns 9.73 [8.6-12] 70.87 [9.4-145.9] ns
IL-2 2.75[2.8-4.7]* 4.68 [3.6-5.5] ns 5.07 [3.7-8.3]* 2.80[2.8-4.3] ns
Fractalkine 364.12 [364.1-391.3]* 391.255 [360.4-449.6] ns 488.115 [455.5-544.1]* 558.94 [403.9-558.9] ns
IL-1B 22.27 [1.9-11.1] 3.94 [2-6.5] ns 34.345 [3.8-72.4] 2.405 [2.1-65.3] ns
IL-6 11.275[10.1-104]* 104.025 [58.9-154.3] ns 82.735 [60.9-133.4]* 114.99 [69.7-147.3] ns
IL-21 4.825 [4.5-6.5] 5.95 [4.7-7.3] ns 6.655 [6-8.8] 7.45 [5.4-9.17] ns
IL-7 15.935 [15.2-38.4] 24.97 [16.1-36.4] ns 27.365 [26.7-31.6] 29.545 [22.8-33.6] ns
IL-5 32.475 [13.4-40.3] 17.03 [12.1-23.2] ns 26.395 [23.9-31.4] 56.18 [56.2-18.4] ns
IL-23 158.025 [88.4-160.6] 118.66 [88.4-149.9] ns 153.865 [126.4-173.7] 252.9 [165.4-359.9] ns
TNFa 208.485 [36.1-231.5] 44.63 [37.5-105.5] ns 90.83 [67.3-130.3] 54.845 [39.4-105.2] ns
GM-CSF 19.225 [18.1-41.2] 29.935 [19.6-40] ns 35.795 [32.1-42.2] 27.215 [22.5-37.0] ns
IL-4 29.09 [22-30.5] 25.42 [22.9-32.6] ns 39.855 [31-50.2] 46.31 [37.1-49.0] ns
IL-10 61.015 [50.8-84.6] 66.315 [55.1-74] ns 45.74 [32.1-68.6] 83.5[68.2-89.1] ns

Data represented as Median [IQR]. p-value based on Mann Whitney. *Comparing involved sites by NTM status. **Comparing non-

involved sites by NTM status. *False Discovery Rate (FDR) <0.05. TFDR <0.2.
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Supplementary Methods

Study Design

This was a prospective observational study of 106 patients with a diagnosis of non-

cystic fibrosis bronchiectasis enrolled over a two-year period.

Subjects

Subjects were enrolled from a non-HIV, non-cystic fibrosis bronchiectasis cohort at
New York University. All subjects signed informed consent to participate in this study
and the research protocol was approved by the New York University and Bellevue
Hospital Center (New York, NY) institutional review boards (IRB# S14-01400). The
inclusion criteria included: CT imaging abnormalities consistent with bronchiectasis
(i.e. mucoid impaction) and symptoms consistent with bronchiectasis (i.e. cough).
Exclusion criteria included: participants recently on antibiotics and/or steroids (within
the last month) and/or a recent history of smoking (within the last year) as cigarette
smoke has been shown to be associated with changes in the upper airway
microbiota [1]. At the time of recruitment, clinical information and questionnaires

were obtained.

Variables Collected

At recruitment clinical information was collected, including age, sex, ethnicity, BMI,
symptoms, smoking history, CT thorax imaging reports, lung function, and sputum
cultures. Patients were also asked to fill out questionnaires: St. George’s
Respiratory Questionnaire (SGRQ), Eating Assessment Tool (EAT-10), Frequency

Scale for the symptoms of GERD (FSSG), and the Reflux Symptom Index (RSI) [2-5]



Sample Collection

Oral wash and induced sputum samples were collected from every patient at
enrolment. In addition, over the two-year period, serial samples were obtained as per
clinical need and sent for culture as well as 16S rRNA gene sequencing. Patients
were asked to first rinse their mouth and back of throat with 10ml of sterile water, to
provide an oral wash sample. Patients were then placed on a 7% hypertonic saline
nebuliser for 10 to 15 minutes. Following this, patients would expectorate as much
sputum as they could into a sterile cup, to provide a sputum sample. A portion of
this sputum sample was sent to the clinical laboratory for sputum culture and
sensitivity, acid-fast bacilli testing and mycobacterium culture. All remaining sputum

was transferred to our lab on ice for 16S rRNA gene sequencing.

Bronchoscopy

In all patients who consented to the study we obtained induced sputum (paralleled
with oral wash) and we offered participation in the bronchoscopy study. A subset of
patients from this cohort underwent bronchoscopy (n=20) in order to evaluate
whether the sputum was representative of the lower airway microbiota and to assess
the immune profile of the lower airway mucosa. As per our protocol, we asked every
patient enrolled in this cohort about their interest in participating in a bronchoscopy
arm. A few patients agreed to a research bronchoscopy (n=6) [6]. Other 14 patients
had a bronchoscopy done as per clinical indication (in general because of difficulties
with obtaining three induced sputum or persistence of clinical suspicious of NTM)
and agreed to have bronchoscopic samples obtained for this research. All subjects
had a CT scan of the chest done prior to bronchoscopy. In all subjects who

underwent bronchoscopy we had a similar topographical sampling approach that



included: oral wash samples, supraglottic samples (sampled using Yankauer),
background/equipment samples (sterile saline, Yankauer and Bronchoscope),
sputum samples and bronchioloalveolar lavage samples (BAL) from involved and
non-involved segments (predefined based on CT scan). From the BAL fluid, cell

count and differential were obtained. BAL fluid aliquots were frozen at -80°C.

Bacterial 16S rRNA-encoding genes guantification and sequencing

DNA was then extracted from all samples with an ion exchange column (Qiagen).
Total bacterial DNA levels were determined by quantitative PCR (gqPCR) as
previously described.[6, 7] High-throughput sequencing of bacterial 16S rRNA-
encoding gene amplicons encoding the V4 region [8] (150bp read length, paired-end
protocol) was performed with MiSeq. The V4 region of the bacterial 16S rRNA gene
was amplified in duplicate reactions, using primer set 515F/806R, which nearly
universally amplifies bacterial and archaeal 16S rRNA genes [8, 9]. Each unique
barcoded amplicon was generated in pairs of 25ul reactions with the following
reaction conditions: 11l Polymerase Chain Reaction (PCR)-grade H20, 10ul Hot
MasterMix (5 Prime Cat# 2200410), 2ul of forward and reversed barcoded primer
(5uM) and 2ul template DNA. Reactions were run on a C1000 Touch Thermal Cycler
(Bio-Rad) with the following cycling conditions: initial denaturing at 94°C for 3 min
followed by 35 cycles of denaturation at 94°C for 45 seconds, annealing at 58°C for
1 minute, and extension at 72 C for 90 seconds, with a final extension of 10 min at

72°C.

To evaluate the Mycobacteriome we re-extracted DNA from additional aliquots and
performed a nested PCR approach to enrich for Mycobacterium DNA template prior

to library preparation for sequencing in order to describe the Mycobacteriome as



previously published [10]. Given the concern of inadequate NTM cell lysis using
standard DNA isolation methods, we utilized a recently published optimized cell lysis
and DNA isolation method as described in Caverly et al. [11]. Briefly, we added
zirconium bead beating step followed by DNA isolation. Then, during library
preparation, the first amplification was performed with two Mycobacterium specific
primers (MycF121 and Myc858R) that targeted the 16S rRNA gene. This approach
generated a 737bp amplicon that contained the V4 region. We then proceeded with
a second PCR using the bar coded 515F/806R primer set as described above to
generate the final amplicon product for sequencing. This “Mycobacteriome”
approach was performed in parallel with our previously mentioned 16S rRNA gene
sequencing approach. These methods were compared using a mock mixture of
bacterial DNA (obtained from Mycobacteriun fortuitum and Streptococcus

pneumoniae) and on subject’s samples.

Analysis of 16S rRNA gene sequences

The obtained 16S rRNA gene sequences were analyzed using the QIIME package
(version 1.9) for analysis of community sequence data [12]. The operational
taxonomic unit (OTU) sequence counts were picked based on Greengenes database
(version 13-8) and normalized to obtain the relative abundances of the microbiota in
each sample. These relative abundances at 97% OTU similarity and each of the 5
higher taxonomic levels (phylum, class, order, family, genus) were tested for
univariate associations with clinical variables. To decrease the number of features,
we only focused on major taxa and OTUs, defined as those having relative

abundance >1% in at least one sample.



Measurement of in vivo cytokines in BAL fluid and Alveolar Macrophages.

In vivo inflammation was assessed by BAL cell count differential and cytokines.
Since analytes in the epithelial lining fluid are diluted with sterile saline during BAL, a
concentration step was performed via dialysis against Tris 10 mM pH 7.5, EDTA 1
mM and lyophilization, using albumin as an internal control as previously
described[13, 14]. For this, the initial volume of acellular BAL fluid was 5mL. After
lyophilization at -80 degrees Celsius sample was re-suspended in 60uL of
Phosphate-buffered saline. Inflammatory biomarkers were measured using a Human
High Sensitivity T Cell Luminex Panel (Millipore HSTCMAG-28SK). Cytokines
included: Fractalkine, GM-CSF, IFNy, IL-1pB, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-
12 (p70), IL-13, IL-17A, IL-21, IL-23, ITAC, MIP-1a, MIP-183, MIP-3a, TNF-a. Ex vivo
cytokine production was assessed using BAL cell supernatant (10x10° cells in 1 mL
of Roswell Park Memorial Institute medium in a 12 well plate) after 18hrs of culture
with media alone or 10ng of LPS. Ex vivo cytokine production during toll like receptor
4 (TLR4) stimulation was expressed as fold change in levels of biomarkers

comparing media alone with LPS.

Statistical Analysis

Since the distributions of microbiome data are non-normal, and no distribution-
specific tests are available, we used non-parametric tests of association. For
association with discrete factors, we used either the Mann-Whitney test (in the case
of 2 categories) or the Kruskal-Wallis ANOVA (in case of > 2 categories). Wilcoxon
signed-rank test were used for paired analysis. We used the ade4 package in R to
construct Principal Coordinate Analysis (PCoA) based on weighted UniFrac

distances [15, 16]. PCoA is a method of dimensionality reduction that uses the



distance between points and plots the variation of these distances across two axes.
Therefore, the closer two points are the more similar they are in their microbial
composition. Similar methods of analysis were used to examine differences in cell

count and cytokines.

To cluster microbiome communities into exclusive ‘metacommunities’ we used a
Dirichlet Multinomial Mixture Model [17]. In this method, for each sample, we impute
the component most likely to have generated it, thus separating samples into groups
it has the highest probability of belonging to. This allows for variable cluster sizes
and a more rigorous means of choosing optimal cluster number. The R package

DirichletMultinomial was used for this method of analysis [18].

To evaluate differences between groups of 16S data, we used linear discriminant
analysis (LDA) Effect Size (LEfSe) [19]. Features significantly discriminating among
groups with LDA score > 2.0 were represented as a cladogram, as produced by
LEfSe with default parameters. For tests of association with continuous variables, we
used non-parametric Spearman correlation tests and false discovery rate (FDR) was
used to control for multiple testing [20]. Co-occurrence between bacterial genera with
more than one percent relative abundance in any given sample were assessed using
SparCC [21] with 20 iterations and 500 boostrap replicates. Significant correlations
were selected (p < 0.05, | O | > 0.4, two-sided t-test) and visualized with Cytoscape
v3.0.2 [22]. The network layout was selected as edge-weighted spring embedded
metrics. Correlation of microbial genera with continuous immune markers was
estimated using nonparametric Spearman correlation with a cutoff threshold of p <
0.05. All data is publicly available in Sequence Read Archive (SRA) under accession

number PRINA418131.



Supplementary Results

Comparing bacterial load of Sputum and Oral Wash Based on NTM status

There were no significant differences in bacterial load based on NTM status (Median
[[QR]= 2,616[1,700-42,036] copies/ul vs. 70,846[7,659-100,617] copies/ul for
sputum and 8,949[2,180-20,591] copies/ul vs. 13,406[5,169-46,679] copies/ul for

oral wash comparing NTM- vs. NTM+ respectively, p=ns).

Evaluation of the Mycobacteriome

To test sensitivity of this approach we first utilized a mock community of
Mycobacterium fortuitum and Streptococcus pneumoniae mixed at various gradient
admixtures (Mycobacterium to Streptococcus ratio ranging from 100:1 to
1:1,000,000, Supplementary Figure 6). Standard 16S rRNA gene sequencing
approach yielded detectable Mycobacterium reads up to a Mycobacterium to
Streptococcus ratio of 1:10 but the nested mycobacteriome approach successfully

biased the sequencing to a ratio of 1:10,000.

We further validated this approach using a larger number of sputum and oral wash
samples (oral wash= 56 samples [52% NTM+], sputum= 54 samples [54% NTM+])
Using our standard 16S rRNA gene sequencing Mycobacterium was not abundant
(>1% relative abundance) in either sputum or oral wash samples. This approach
yielded Mycobacterium reads in only 2/56 (4%) oral wash samples (both NTM-) and
5/54 (9%) sputum samples (all NTM+ samples), which was 17% of NTM+ samples, a
smaller proportion than that identified in NTM+ BAL samples. Blast analysis was
utilized to characterize the Mycobacterium species identified by this method. The five
NTM+ sputum samples with Mycobacterium reads had 100% similarity with

Mycobacterium avium. In contrast, the two NTM- oral wash samples with



Mycobacterium reads had 100% similarity with Mycobacterium aurum (another

species that has not been identified as pathogenic).

Clustering of Bronchoscopic Samples

Using DMM two clear clusters were identified within the bronchoscopy samples
(Supplementary Figure 9) similar to previous description of the lower airway
microbiota [6, 13]. A LEfSe analysis of these clusters showed a clear distinction of
taxa, where Cluster 1 samples were enriched with Alicyclobacillus, Acinetobacter
and Bradyrhizobium whereas Cluster 2 samples were enriched with oral

commensals such as Prevotella, Veillonella and Streptococcus.
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Supplementary Figures Legends:

Supplementary Figure 1. Comparison of microbial diversity in oral wash and
sputum samples. A. Alpha diversity based on Shannon index was higher in oral
wash as compared to sputum. B. PCoA based on weighted UniFrac distance
demonstrates significant differences between oral wash and sputum samples
(PERMANOVA p<0.001). C. Comparison of degree of similarity between oral wash
and sputum samples within the same subject vs. between different subjects. D.
LEfSe analysis was utilized to identify taxa differentially enriched in oral wash and
sputum samples. Multiple significant taxonomic differences were observed at
different phylogenetic levels as represented in the cladogram, left panel. Bar plots in
the right represents Linear Discriminant Analysis (LDA) effect size (left) and
differences in relative abundance of differentially enriched taxa at a genus level

(LDA>2).

Supplementary Figure 2: Differences in diversity between all oral wash and
sputum samples for the NTM+ and NTM- groups. For a diversity Shannon
Diversity Index was used, for  diversity weighted UniFrac was used. A. For oral
wash samples there were no significant differences in a diversity (Mann Whitney
p=ns) but significant differences in B diversity were noted (PERMANOVA p=0.043).
B. For sputum samples there were significant differences in o diversity, and a non-

significant difference in f diversity.

Supplementary Figure 3: Heat Map of 16S sequencing of all samples obtained

during bronchoscopy. Unsupervised hierarchical clustering of most abundant taxa



(relative abundance = 1% in any sample) identified in Background, Nasal Swab, Oral

Wash, Sputum, Supraglottic and Bronchoalveolar Lavage (BAL).

Supplementary Figure 4: Comparison of bacterial load in bronchoscopic
samples. gPCR for 16S rRNA gene was used to compare bacterial load of
background samples, lower airway samples (BAL), upper airway samples (oral wash

and supraglottic) and sputum.

Supplementary Figure 5: Differences in diversity between NTM+ and NTM- in
lower airway microbiota. A. There were no significant differences in o diversity
between NTM+ and NTM- groups. B. B diversity based on weighted UniFrac showed

non-significant differences between NTM+ and NTM- groups.

Supplementary Figure 6: Comparison between an unbiased 16S rRNA and a
biased mycobacteriome approach using mock bacterial DNA mixture.
Mycobacterium fortuitum and Streptococcus pneumoniae isolates were used to
extract DNA. DNA template was sequenced for each isolate and for a series of
mixture ratios of Mycobacterium:Streptococcus. Mixing ratios started at 100:1 ratio
(Mycobacterium:Streptococcus respectively) to a 1:10,000,000 ratio. Using a
standard 16S rRNA sequencing approach, Mycobacterium fortuitum was identified
until a ratio of 1:10, after which only Streptococcus could be identified. Using a
nested mycobacterium bias approach, Mycobacterium was identified (with a relative
abundance close to 100%) even in much lower dilution of its template, up to a ratio

of 1:10,000.



Supplementary Figure 7: Comparison between sequence data obtained using
an unbiased 16S rRNA approach and a biased mycobacteriome approach for
equipment background samples. A. Shows the differences in 3 diversity (based on
weighted UniFrac distance) between samples processed with unbiased 16S vs.
biased mycobacteriome approach. B. LEFSE analysis showed enrichment of taxa
identified through 16S rRNA and those identified through the biased mycobacteriome
approach. C. Bar charts show relative abundance of OTUs annotated to

Mycobacterium and their annotation based on BLAST on the two datasets.

Supplementary Figure 8: Comparison between sequence data obtained using
an unbiased 16S rRNA approach and a biased mycobacteriome approach for
oral wash and sputum samples. A. In oral wash two samples were enriched with
Mycobacterium aurum, a non-pathogenic Mycobacterium strain. Both of these
samples were NTM negative on culture. B. In sputum 5 samples were enriched with

Mycobacterium avium. All 5 samples were NTM positive on culture.

Supplementary Figure 9: Clustering of Bronchoscopy Samples by a Dirichlet
Multinomial Model. A. Model fitness was plotted against number of clusters. Lower
model fitness indicates best fitness. Two clusters were identified as having the best
model fit. B. LEfSe analysis identified taxonomic differences in lower airway samples
(BAL) between cluster 1 and cluster 2 and represented in Cladogram. C. LDA and
differences in relative abundance of taxa at genera level found differentially enriched

in BAL samples between cluster 1 and cluster 2.



Supplementary Figure 10: Associations between taxa and inflammatory
biomarkers in the lower airways for NTM- samples. Correlations seen with taxa
identified as oral commensals and Cluster 2 (from DMM) are not seen with NTM-

samples (in comparison to Figure 5)



Supplementary Table 1: Oral and induced sputum samples.

Oral Wash Sputum Total
Baseline 106 106 212
2-4 Months 15 13 28
5-7 Months 8 9 17
8-10 Months 4 3 7
11-13 Months 5 3 8
14-16 Months 2 4 6
17-19 Months 6 4 10
20-22 Months 3 3 6
23-24 Months 1 2 3

Total 150 147 297




Supplementary Table 2: Demographic and pulmonary function data of the bronchoscopy
cohort

All Patients NTM Status
VARIABLES (-) (+) p value
N 20 12 8
Age 63.8 (12.9) 60.3 (14.0) 69.0 (8.8) 0.46
No. Female (%) 19 (95) 11 (92) 8 (100) 0.33
No. Caucasian (%) 15 (75) 8 (42) 7 (88) 0.56
BMI 22.6 (4.8) 23.7 (5.4) 21.2 (3.6) 0.31
Packs Per Day 1.2 (0.7) 1.1 (0.7) 1.2(1.1) 0.93
No. Years Smoking 22.1(12.2) 21.2 (14.3) 25.0(0.0) 0.73
Lung Physiology*
FVC (% predicted) 95.5(10.1) 97.7 (12.3) 93.7 (8.2) 0.50
FEV; (% predicted) 92.3 (10.7) 91.7 (13.5) 92.9 (8.7) 0.85
FEV1/FVC (%) 76.2 (7.8) 74.8 (8.7) 77.4(7.3) 0.57
RV (% predicted) 116.0 (25.4) 106.0 (22.4) 131.0 (24.5) 0.13
TLC (% predicted) 105.9 (9.0) 101.5 (7.5) 111.2 (8.2) 0.07
DLCO (% predicted) 98.1 (23.5) 105.6 (22.8) 88.8 (24.0) 0.32

* Available in 13 subjects



Supplementary Table 3: Ex Vivo (TLR4 stimulated) cytokine production of BAL cells in the 20 patients from the bronchoscopy cohort

NTM- NTM+
(n=12) (n=8)
p
Involved Non-Involved value Involved Non-Involved P value

Ex Vivo Cytokine Production (fold change)

GM-CSF 12.922 [0-47.6] 89.799 [47.6-123.4]** ns 8.284 [4.3-9.3] 33.105 [22.7-71.2]** 0.05
IFNy 0.966 [0-1.8] 4.647 [3.3-15.2]** ns 0.06 [0-0.5] 1.158 [1.1-1.3]** 0.05
MIP1j 4.192 [-0.1-4.7] 16.468 [12-74.6] ns 5.231 [4.1-7.7] 13.354 [11.4-28.7] ns
IL-23 0.145 [0.1-0.8] 1.948 [1.8-3.8] ns 1.344 [1.2-1.4] 2.018 [1.7-2.0] ns
MIPla 3.134 [0-3.4] 0.2 [0.1-2.2] ns 6.885 [3.5-7.2] 22.03 [11.4-23.0] ns
IL-8 0 [0-0.8] -0.052 [-0.1-0] ns 16.841 [12.2-81.2] 122.885 [60.9-292.8] ns
IL-5 0.147 [0-2.8] 4.2 [2.4-4.9] ns 4,531 [2.3-6.4] 10.982 [9.5-12.7] ns
MIP3a. 3.017 [0.1-12.2] 24.74 [12.5-36.9] ns 8.414 [6.3-21.3] 41.411[29.1-51.9] ns
IL-4 0.29 [0-0.4] 0.832[0.6-1.1] ns 0.908 [0.8-1] 0.849 [0.8-1.4] ns
IL-6 32.907 [0-34.5] 1165.817 [589.7-1380.4] ns 890.798 [458.9-1171.9] 866.575 [602.9-1109.1] ns
IL-21 3.141 [-0.2-4.1] 3.719 [1.9-4.3] ns 2.156 [1.7-2.9] 3.885 [3.6-5.6] ns
TNFo 9.132[0.2-10.7] 16.773 [8.4-26] ns 15.494 [10.9-25.2] 36.424 [27.4-50.8] ns
Fractalkine 1.982 [-0.1-2.5] 2.127 [1.2-2.8] ns 1.364 [1.1-2.2] 2.024 [2-2.5] ns
IL-1P 14.293 [0.1-19.1] 106.462 [54.4-252.6] ns 11.535 [8.7-15.3] 34.318 [18.9-74.8] ns
IL-10 9.747 [0.1-18.9] 58.508 [30.7-148.5] ns 7.229 [5-38.4] 27.244 [16.7-41.5] ns
IL-2 0.559 [0.5-0.7] 0.376 [0.3-0.5] ns -0.036 [-0.2-1.1] 0.031 [0--0.5] ns
IL-7 3.258 [-0.1-5] 4.475 [2.3-5.6] ns 4.231[2.9-5.5] 4.221 [3.7-5.3] ns
IL-13 1.087 [0.2-1.8] 1.225[0.8-2] ns 1.392 [1.1-1.6] 1.921[1.7-2.2] ns
IL-12 p70 2.765 [1.9-3.3] 6.118 [3-35.6] ns 6.462 [4.8-9.3] 7.283 [5.7-7.6] ns
IL-17A 0.526 [0-0.9] 0.557 [0.5-2.2] ns 0.723 [0.6-1.3] 1.213[0.8-1.3] ns
ITAC 0.224 [0.1-0.4] 0.111[0.1-1.5] ns -0.14 [-0.2-0.2] 0.756 [0.5-0.9] ns

Data represented as Median [IQR]. p-value based on Mann Whitney. *Comparing involved sites by NTM status. **Comparing non-involved sites

by NTM status
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Supplementary Figure 9
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Supplementary Figure 10
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