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ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis
and limited therapeutic options. The incidence of IPF increases with age, and ageing-related
mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar
epithelium represents a major site of tissue injury in IPF and senescence of this cell population is
probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell
senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown.
Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as
senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and
primary cells.

Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-
associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass
spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of
apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and
extracellular matrix markers, while increasing alveolar epithelial markers.

These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and
that senolytic drugs may be a viable therapeutic option for IPF.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of
2–4 years [1]. Mechanisms involved in disease development and progression include repetitive injury to
the lung epithelium, activation and proliferation of (myo)fibroblasts and altered production of extracellular
matrix, together resulting in the destruction of lung architecture and function [1, 2]. Two drugs
(pirfenidone and nintedanib) have been approved for the treatment of mild/moderate IPF [3, 4]; however,
therapies halting or reversing disease progression are still lacking. Thus, there is a tremendous interest in
deepening our understanding of the pathomechanism(s) underlying IPF in order to identify novel
therapies.

The incidence of IPF increases with age and accumulating evidence strongly suggests ageing as a crucial
contributor to IPF initiation and progression [5]. In support of ageing as one proposed driver of disease
pathogenesis, normal and accelerated-aged mice are more susceptible to experimentally induced fibrosis
[6, 7]. A landmark paper in 2013 described nine hallmarks of ageing [8], and importantly, all nine
hallmarks have been found to contribute to IPF pathogenesis, albeit to a variable degree [5]. Cellular
senescence, representing one of these hallmarks, is characterised by stable cell cycle arrest accompanied by
secretion of mediators, including pro-inflammatory cytokines and metalloproteinases, collectively termed
the “senescence-associated secretory phenotype” (SASP) [9, 10]. While the detrimental effects of
senescence are thought to be a result of stem or progenitor cell depletion or of the SASP components,
senescence has also been described to be beneficial in tumour suppression and wound healing [10–12].

In the lung, as in other organs, the number of senescent cells increases with age [13] and cellular
senescence has been linked to the pathogenesis of chronic lung diseases such as chronic obstructive
pulmonary disease [14, 15] or IPF [16–20]. The contribution of senescent cells to disease onset and
progression remain unclear. Some studies have suggested a link between increased senescence and fibrotic
burden [17, 21, 22], while others report that attenuation of lung fibrosis correlates with lung fibroblast
senescence [23]. In addition to lung fibroblasts, evidence has emerged that alveolar epithelial cells can
become senescent in IPF [16, 20, 24]. However, lung epithelial cell senescence and its potential pathogenic
role in IPF remains largely unexplored. Here, we aimed to investigate whether senescence of this cell
population is detrimental or beneficial to lung repair. We analysed cell senescence in lung tissue and in
primary alveolar epithelial type (AT)II cells derived from human IPF and an experimental model of
murine lung fibrosis. We demonstrate that depletion of senescent epithelial cells in vitro and ex vivo
stabilises the epithelial cell phenotype and decreases fibrotic markers, indicating that senescence of alveolar
epithelial cells may contribute to disease pathogenesis.

Materials and methods
Senescence-associated β-galactosidase staining
Primary mouse (pm) ATII cells or three-dimensional lung tissue cultures (3D-LTCs) were prepared from
PBS- or bleomycin-treated mice, as described previously [25] (online supplementary material) and
cultured in multiwell plates. pmATII cells from PBS- and bleomycin-treated mice express high levels of
prosurfactant protein (proSP)-C as well as the epithelial cell markers E-cadherin, cytokeratin (CK) and
zona occludens (ZO)-1. Fibrotic ATII cells further exhibit co-staining of ZO-1 and proSP-C with
α-smooth muscle actin (figure 3a, online supplementary figure S4B and [26, 27]). Cytochemical staining
for senescence-associated (SA) β-galactosidase was performed using a staining kit (Cell Signaling
Technology, Danvers, MA, USA), according to the manufacturer’s instructions. Images were acquired
using a Zeiss Axiovert40C microscope ( Jena, Germany). The percentage of senescent cells was determined
by counting of total and SA-β-galactosidase-positive cells in three random microscopic fields per condition
(100× magnification).

Flow cytometry-based detection of SA-β-galactosidase
Flow cytometry-based detection of SA-β-galactosidase was performed as described previously [28]. Briefly,
pmATII cells from PBS- and bleomycin-treated animals were incubated with bafilomycin A1 (100 nM;
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Enzo Life Sciences, Farmingdale, NY, USA) and C12FDG (20 nM; Life Technologies, Carlsbad, CA, USA)
for 1 and 2 h, respectively, directly after isolation or at day 2 of culture. Cells were washed once and
stained for allophycocyanin-conjugated epithelial cell adhesion molecule (EpCAM) antibody (118214;
BioLegend, San Diego, CA, USA) for 20 min at room temperature, washed once and analysed using a
fluorescence-activated cell sorter (LSRII; BD Bioscience, San Jose, CA, USA). Additional information can
be found in the online supplementary material.

Statistical analysis
Data are presented as mean±SEM, from n separate experiments. Statistical significance of differences was
evaluated using t-tests, paired t-tests or one-way ANOVA followed by a Newman–Keuls multiple
comparison test, where appropriate. Correlation was evaluated using Pearson’s test. Differences were
considered to be statistically significant when p<0.05. Additional information can be found in the online
supplementary material.

Results
Senescence marker expression is upregulated in the lung epithelium in IPF
First, we aimed to investigate the occurrence of senescence in our IPF patient cohort. To this end, we
analysed the gene expression of the senescence effector proteins cyclin dependent kinase inhibitor
(CDKN) 2A (P16) and CDKN1A (P21) in explanted lung tissue specimens of IPF or donor patients. P16
levels were significantly increased in lung homogenates of IPF patients as compared to donor lung
homogenates (figure 1a; mean±SD change in threshold cycle (ΔCt) donor −1.91±0.74 versus IPF 0.74±0.40,
p<0.01), whereas P21 levels remained unchanged. Our cohort matches results extracted from the Lung
Genomics Research Consortium microarray data (GSE47460 and GPL4680) (online supplementary figure
S1A). Furthermore, we found that P16 expression levels in IPF tissue negatively correlated with diffusing
capacity of the lung for carbon monoxide (online supplementary figure S1B), indicating that patients with
higher P16 levels had more severe disease. Furthermore, we observed increased P16 as well as P21 protein
in whole-lung homogenates from IPF patients compared to donor lung tissue, as assessed using Western
blotting (figure 1b).

To identify which cell types express phenotypic markers of senescence in IPF, we next performed
immunohistochemical staining of P16 and P21 on IPF and donor lungs and found that IPF lungs
exhibited intense nuclear and cytoplasmic staining for both P16 and P21 compared to age-matched donor
lungs (figure 1c and d). Co-staining with epithelial cell marker proSP-C, KRT5 or KRT7 revealed that
P16- and P21-positive cells were found in the alveolar epithelium of IPF lungs, largely in proSP-C+ KRT7+

ATII cells (figure 1c; arrows), while no or only sporadic staining for P16 and P21 was observed in donor
lungs (figure 1d; arrows). Furthermore, KRT5+ KRT7+ abnormal basal cells in areas of bronchiolisation
exhibited positive staining for P16 and P21 (online supplementary figure S2A–C), while no or only weak
staining was observed in mesenchymal cells (online supplementary figure S2A–D). In addition, P16 and
P21 staining was observed in proSP-C− KRT5− KRT7+ epithelial cells of IPF lungs (figure 1c;
arrowheads). Notably, P21 (and P16) staining was also found in proSP-C+ KRT5+ double-positive cells
(figure 1c; dashed arrow; and figure S2B). We further detected increased amounts of γH2A.X (phospho
S139), a marker for DNA double strand breaks and activated DNA damage response, which has been
implicated in cellular senescence, in epithelial cells of IPF patients co-localising with P16 staining (online
supplementary figure S3). In addition, an increase in P16, but not P21 expression was detectable on the
mRNA level in primary human ATII cells isolated from IPF patients compared to non-IPF donors (figure
1e). This discrepancy between changes in the P21 protein and gene expression level might be due to
differential post-transcriptional control of P21 protein expression [29, 30]. Collectively, these data suggest
that senescence occurs in the lung epithelium in IPF.

Senescence markers are upregulated in experimental lung fibrosis
Next, we analysed cellular senescence in mice subjected to bleomycin (Bleo)-induced lung fibrosis
(2 U·kg−1 body weight, sacrificed at day 7, 14 or 21 after instillation). Both P16 and P21 were significantly
upregulated on the gene expression level in fibrotic mouse lungs (figure 2a; mean±SD ΔCt P16: day 14 PBS
−5.66±0.34 versus Bleo −4.33±0.21; P21: day 14 PBS −0.64±0.22 versus Bleo 1.42±0.22; p<0.001). While
P16 was upregulated as early as day 14 post-Bleo instillation, P21 was upregulated earlier at day 7 and
decreased back to baseline by day 21. The different kinetics of P16 and P21 expression were also observed
in a previously published microarray dataset (online supplementary figure S4A) [34], and probably
represent the different kinetics of P16/P21 induction upon DNA damage [35, 36]. P21 protein expression
was significantly increased at day 7 as analysed using Western blotting (figure 2b). Unfortunately, due to
the lack of reliable and specific mouse P16 antibodies, we could not analyse P16 on protein level [11].
Next, we assessed SA-β-galactosidase activity, a widely used surrogate marker for the detection of
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FIGURE 1 Senescence marker expression is upregulated in idiopathic pulmonary fibrosis (IPF) patients.
a) Gene expression of P16 and P21 in lung homogenates of IPF and donor tissue was measured by quantitative
(q)PCR and normalised to HPRT. Data are presented as mean±SEM. n=6. Means were compared using unpaired
t-tests. b) Representative and quantitative immunoblot analyses of subpleural lung tissue from patients with
sporadic IPF (n=16) and human donor lungs (n=11) using specific antibodies against P16 and P21, and β-actin
as loading control. Densitometric ratios of the respective protein to β-actin are given as mean±SEM. Means
were compared using unpaired t-tests. Immunohistochemical staining of serial sections of c) IPF or d) donor
lung tissue for prosurfactant protein-C (proSP-C; marker for alveolar epithelial type (AT)II cells), cytokeratin 5
(KRT5, marker for bronchiolar basal cells), cytokeratin 7 (KRT7, marker for simple epithelial cells) and P16
and P21 protein. ProSP-C+ KRT7+ ATII cells expressing P16 or P21 are indicated by arrows; proSP-C− KRT5−

KRT7+ epithelial cells expressing P16 or P21 are indicated by arrowheads; proSP-C+ KRT5+ KRT7+ epithelial
cells expressing P21 are indicated by dashed arrows. e) Gene expression of P16 and P21 in primary human
ATII cells isolated from IPF and donor tissue was measured using qPCR and normalised to HPRT. Data are
presented as mean±SEM. n=4. Means were compared using unpaired t-tests. *: p<0.05; **: p<0.01; ***: p<0.001.
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senescent cells [28], in three-dimensional lung tissue cultures (3D-LTCs) from fibrotic mouse lungs (day
14 post-Bleo). Importantly, increased blue staining, indicating a higher number of senescent cells, was
observed in fibrotic lungs as compared to healthy lungs (figure 2c). The SA-β-galactosidase activity was
predominantly observed in structural cells that morphologically resembled lung epithelial cells (figure 2d;
arrows). To further explore whether senescence is increased and in which cell types senescence occurs in
experimental lung fibrosis, we utilised gene set enrichment analysis [37] of previously published
microarray data sets obtained from whole murine lungs [32], primary murine fibroblasts (pmFb) [33] or
pmATII cells [26] of Bleo- versus PBS-treated mice and compared those to a previously published gene
signature list for senescence [31] (figure 2e). We found a significant enrichment of senescence-associated
genes in fibrotic pmATII cells, but not in whole lung or pmFb from Bleo-treated mouse lungs (figure 2e).
These data demonstrate that senescence-associated genes are enriched in experimental lung fibrosis and
indicate that the lung epithelium is a potential source of senescent cells in the fibrotic lung.

Increased senescence of ATII cells in experimental lung fibrosis
To further analyse whether ATII cells are a major senescent cell type in lung fibrosis, we isolated pmATII
cells from Bleo (fibrotic) and PBS (healthy) mouse lungs (figure 3a and online supplementary figure S4B).
Notably, freshly isolated fibrotic EpCAM+ pmATII cells exhibited increased staining for SA-β-galactosidase
activity over control EpCAM+ pmATII cells, as analysed using flow cytometry (figure 3b). After 48 h of
culture, fibrotic ATII cells maintained an increase of 2.45±0.45-fold in SA-β-galactosidase staining over
healthy cells (figure 3c). This was further confirmed by conventional light microscopy following in vitro
culture and SA-β-galactosidase staining (figure 3d). Accordingly, freshly isolated fibrotic pmATII cells
showed increased P16 and P21 transcript levels as well as senescence-associated heterochromatic foci
marked by foci of histone H3 lysine 9 trimethylation (H3K9me3) (figure 3e and online supplementary
figure S4C). Additionally, upregulation of secreted phosphoprotein (Spp) 1 and matrix metalloproteinase
(Mmp) 2, two well-known components of the SASP, was observed (figure 3e). In order to examine
whether P16 and P21 activation translated to increased SASP activity, we performed a proteomic analysis
of the secretome of fibrotic and normal pmATII cells. We identified several SASP components in our
screen and found that 52% of those identified were upregulated >1.5-fold in the fibrotic secretome,
whereas only 10% of detected SASP components were downregulated (figure 3f and g). Among the most
upregulated SASP components were insulin growth factor binding proteins (Igfbp) 3, 4 and 7 and MMP 3,
12 and 14 (figure 3h). Together, these data strongly suggest increased senescence of fibrotic ATII cells
along with increased secretion of SASP factors.

Depletion of senescent cells by senolytic drugs decreases fibrotic markers and increases
epithelial cell marker expression
Whether senescence contributes to or limits pulmonary fibrosis is still an area of active discussion. To
address this point, we used a recently described combination of senolytic drugs, dasatinib (D) and
quercetin (Q) (a tyrosine kinase inhibitor and flavonol combination) to deplete senescent cells from
culture [39–41]. Fibrotic pmATII cells exhibited stable expression of profibrotic markers during culture
(online supplementary figure S5A). Treatment with senolytic compounds reduced total cell numbers and
the percentage of senescent cells (figure 4a and b) and P16 expression level dropped significantly (figure
4c). Importantly, an increase in apoptotic cleaved caspase 3 and annexin V staining was observed in ATII
cells upon senolytic treatment (figure 4d and e). Apoptosis was predominantly induced in senescent cells
(figure 4f), consistent with a depletion of senescent cells induced by senolytic drugs [41].

We next analysed whether senolytic treatment affected SASP factors in pmATII cells. Notably, treatment
with DQ led to a reduction of SASP factors such as Mmp12, Serpine1 and Spp1 (figure 4g). Senescent cell
depletion further correlated with reduced extracellular matrix components Collagen1a1, Collagen5a3 and
Fibronectin (figure 5a and online supplementary figure S5C), which have been suggested to be part of the
SASP [22, 35]. Notably, we found significantly increased mRNA expression of the epithelial cell marker
E-cadherin (Cdh1) as well as functional ATII cell markers, such as Sftpc and Sftpa, while the ATI cell
marker T1α was unaffected (figure 5b and online supplementary figure S5D). In addition, protein
secretion of SP-C was increased upon senolytic treatment (figure 5e) along with increased E-cadherin
protein level (figure 5f). We further analysed interleukin (IL)-6 protein secretion (a major component of
the SASP), and found significantly decreased amounts upon senolytic treatment (figure 5c; DMSO
3.95±0.81-fold over control versus DQ 1.34±0.65-fold over control). Moreover, transcript level as well as
secretion of the ATII cell-derived fibrotic mediator Wnt-inducible signalling protein (Wisp) 1 [26] were
significantly reduced upon senolytic treatment (online supplementary figure S5C and figure 5d; DMSO
2.10±0.91-fold over control versus DQ 0.71±0.26-fold over control). Together, these data suggest effective
depletion of senescent cells and modulation of their associated SASP. Notably, when treating ATII cells
isolated from PBS-treated lungs, which show reduced senescence as compared to fibrotic ATII cells, with
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senolytic drugs, we only observed a slight reduction in cell number, P16 expression and SASP components
accompanied by an increase in epithelial cell markers as compared to control (online supplementary
figure S6).

Finally, we aimed to elucidate whether depletion of senescent cells further modulates fibrotic burden in an
ex vivo model using native lung tissue slice cultures. 3D-LTCs derived from Bleo-treated mouse lungs
exhibit increased expression of fibrotic marker (online supplementary figure S7A), as well as
senescence-associated P16 and P21 expression (figure 6a). Treatment of fibrotic 3D-LTCs with senolytic
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drugs reduced SA-β-galactosidase staining and P16 expression (figure 6b and c) and increased cleaved
caspase 3 staining (figure 6d). In addition, senolytic treatment reduced expression of the SASP
components Mmp12, Serpine1 and Spp1 (figure 6e). Importantly, DQ treatment further reduced fibrotic
markers, such as Collagen1a1 and Wisp1 transcript and protein levels (figure 7a, c and e), whereas Sftpc
transcript and protein expression increased compared to time-matched control (figure 7b and d). Notably,
we observed similar trends when treating healthy 3D-LTCs with senolytic drugs, albeit to a lower extent
than in the fibrotic 3D-LTCs (online supplementary figure S8). In summary, senescent cell depletion by
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senolytic drugs reduced fibrotic burden and increased ATII cell markers in primary ATII cells as well as in
ex vivo 3D-LTCs.

Discussion
IPF is a disease of the elderly, and several hallmarks of ageing such as cellular senescence have been linked
to this disease [5]. Recently, BAKER et al. [42] were able to demonstrate that depletion of naturally
occurring senescent cells extends healthy lifespan and decreases age-induced pathologies in mice.
Nevertheless, there is evidence that senescence might also limit diseases, such as cancer or fibrotic
disorders of the skin or heart [10–12]. Recent reports in lung fibrosis are conflicting, since both a
detrimental role [17, 21, 22, 43] as well as an antifibrotic role [23] have been reported. In this study, we
utilised senolytic drugs on fibrotic lung epithelial cells in vitro and ex vivo in 3D-LTCs and demonstrated
that senolytic treatment attenuates fibrotic mediator expression, while stabilising epithelial cell marker
expression and function. These findings suggest that senescence contributes to development of lung
fibrosis and that treatment of pulmonary fibrosis with senolytic drugs might be beneficial.

Increased senescence has been described for IPF as well as in mouse models of pulmonary fibrosis in both
epithelial cells and (myo)fibroblasts [16–18, 21, 23, 44–46]. Here, we confirm that lung epithelial cells
from experimental and human IPF exhibit increased cellular senescence. Interestingly, we observed cellular
senescence in different subpopulations of human lung epithelial cells, including a population of proSP-C+

KRT5+ double-positive cells. These double-positive cells have been described in the mouse as derived from
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a rare undifferentiated epithelial cell population, which is activated upon influenza infection or bleomycin
challenge [47]; however, the origin of these cells as well as the contribution of single cell subpopulations in
the human lung to disease pathogenesis requires further investigation.

Senescent cells secrete several mediators in the SASP that have been shown to directly influence their
surrounding microenvironment. Importantly, we identified fibrotic ATII cells as a potent source of
profibrotic SASP components. In line with this, increased expression of SASP components has been found
in bleomycin-induced lung fibrosis in vivo [22, 44]. Different components of the SASP such as IL-6,
MMP-12 [48], IL-1β [49] or keratinocyte growth factor [50] have been described to induce alveolar
epithelial cell reprogramming, a prominent feature of IPF pathogenesis [2, 51]. Notably, several different
epithelial cell phenotypes can be observed in the fibrotic lung, including cellular senescence [51]. The
distinct phenotypes are most likely determined by 1) cell intrinsic properties that differ in specific (and to
be characterised) subpopulations and 2) extrinsic factors, such as the direct microenvironment.
Components of the SASP have been described to influence cell proliferation [13]. Thus, it may be that the
SASP of senescent fibrotic cells contributes to the hyperproliferative phenotype of some epithelial cells or
to neighbouring fibroblasts. By depleting senescent epithelial cells, we were able to reduce their associated
SASP, which had potent antifibrotic effects and partly restored the normal epithelial cell phenotype. While
our results strongly support the hypothesis that senescent epithelial cells and their SASP contribute to
fibrosis pathogenesis, it will be important to further elucidate specific SASP compositions of different cell
types which might account for distinct outcomes in fibrotic diseases in further studies.

Different mechanisms can lead to the induction of senescence [10]. DNA damage, as well as telomere
shortening, can trigger senescence. Notably, telomere attrition is a driving force in IPF and mutations in
telomerase genes have been found in familial and sporadic cases of IPF [52, 53]. NAIKAWADI et al. [24]
reported that telomere dysfunction in ATII cells, but not mesenchymal cells, led to increased cellular
senescence and lung fibrosis. The same group previously found that alveolar epithelial cell senescence is
regulated by microRNA-34a [16], which has also been reported to regulate senescence of lung fibroblasts
[23]. In addition to DNA damage- or telomere shortening-induced senescence, overexpression of the
canonical WNT mediator β-catenin can result in oncogene-induced senescence and WNT signalling has
further been demonstrated in senescence occurring during embryonic development [54, 55]. Several WNT
ligands, such as WNT3A, have been shown to induce senescence upon prolonged cellular exposure [56].
In line with this, increased WNT/β-catenin activity has been reported in human and experimental lung
fibrosis [26, 56–59]. Here we found that the expression of the WNT target WISP1 was reduced by
senolytic treatment of fibrotic ATII cells, thus suggesting that WISP1 might contribute to the profibrotic
SASP.

Depletion of senescent cells presents a potential therapeutic option for the treatment of several chronic
diseases, including those of the ageing lung. Pharmacological targeting of senescent cells has been recently
developed [39, 41]. Both pharmacological approaches target antiapoptotic pathways that senescent cells are
highly reliant on. Inhibiting these antiapoptotic pathways induces apoptosis in the senescent cells,
however, while the drugs target predominantly senescent cells, other mechanisms cannot be excluded
[39, 41, 60]. Here, we provide evidence that senolytic treatment induces apoptosis in senescent alveolar
epithelial cells, which subsequently led to an attenuation of profibrotic marker expression and increased
epithelial cell function. Concerns that antisenescent therapies might increase the risk of cancer have been
addressed by a study showing that depletion of senescent cells actually reduced tumour burden in
naturally aged animals, rather than increasing it [42].

Why senescent cells exhibit antifibrotic properties in some fibrotic disorders, while appearing to be
detrimental in pulmonary fibrosis is an intriguing question. One explanation might be that distinct cell
types are affected by senescence [10, 20, 35]. In the case of liver, heart and skin fibrosis, where senescence
is thought to be beneficial, myofibroblasts are the major senescent cell type [10–12, 20, 61]. However, in
IPF we and others demonstrate that epithelial cells represent a major cell type that is affected by
senescence [16, 18] and while we did not find fibroblasts to be affected to a large extent, other recent
publications report senescence in fibroblasts in IPF as well [17, 22]. Interestingly, senescence induced by
microRNA-34a in epithelial cells seems to promote fibrosis in aged animals, while it reduces fibrotic
burden when lung fibroblast senescence is induced [23, 43], indicating that epithelial cell senescence is
indeed detrimental, whereas fibroblast senescence is protective. A recent study employed a combination of
senolytic drugs in experimental lung fibrosis in vivo and report a reduction of senescent cells as well as
fibrosis development [22], similar to our findings. However, their work focused primarily on examining
the contribution of senescent fibroblasts using in vitro approaches and they did not examine epithelial cell
behaviour in their model. We demonstrated that both senolytic drugs reduce the senescent cell burden and
attenuated fibrotic marker using an ex vivo model of lung fibrosis in 3D-LTCs. This technique allows the
analysis of tissue-level responses to senolytic drugs in living tissue ex vivo. Moreover, murine 3D-LTCs can
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be applied to extend mechanistic studies, while reducing overall animal experimentation. Notably, we were
able to confirm our in vitro findings with respect to epithelial cell marker expression as well as fibrosis
markers and provide evidence that epithelial cells are also targeted in 3D-LTCs. However, it is most likely
that also other cell types, such as fibroblasts [22] are affected by senolytic treatment in this system. Future
studies using in vivo models targeting specific senescent cell populations are needed to further delineate
senescent cell-specific contribution to the development of pulmonary fibrosis. In addition, it will be
important to further confirm the role of senescent cell types in human lung tissue. To this end, we have
recently developed a model that induces early fibrotic-like changes in human 3D-LTCs from non-IPF
patients [62], which may help us define the potential for as well as the limitations of antisenescent therapy
in the context of lung fibrosis.
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